\renewcommand{}{}
N or Space for next slide, P for previous slide, F for full screen, M for menu
You might need to press C (possibly twice) to be able to click on links.
Boaz Barak (instructor), Brian Sapozhnikov (Head TF), Albert Chalom, Alexis Ross, Charles O’Mara, Daniel Chen, David Li , Jambay Kinley, Jane Ahn, John Shen, Josh Seides, Laura Pierson, Pranay Tankala, Raymond Lin, Theresa Nguyen, Wanqian Yang, William Fu, Hikari Sorensen (Extension TF), Eric Lu (Patel Fellow)
Laptops/phones only on last 5 rows please.
Interference positive and negative probabilities.
Measurement (non commutativity): measuring a property collapses it.
Entanglement measuring one system can affect another.
Uncertainty / no cloning Can’t get all information about a system.
Buzzwords:
If we shoot baseballs through two slits, what’s the pattern that we expect to see?
a.
b.
c.
d.
We give a random \(x \in \{0,1\}\) to Alice and get response \(a \in \{0,1\}\), and random \(y\in \{0,1\}\) to Bob and get response \(b\). If \(x=y=1\) then they win if \(a\neq b\). Otherwise they win if \(a=b\)
Thm 1: Every classical strategy wins with probability \(\leq 0.75\).
Thm 2 (+experiments): If Alice and Bob can share entangled qubits then they can win with probability \(\tfrac{1}{2} + \tfrac{1}{2\sqrt{2}} \geq 0.85\).
Is there a problem?
What’s the goal of a physical theory?
What sorts of stories are allowed?
Field explodes
\(\mathbf{BQP}\): polynomial time quantum computable functions.
\(\mathbf{BPP} \subseteq \mathbf{BQP} \subseteq \mathbf{EXP}\).
Quantum computing doesn’t change basic lessons:
Algorithms can be modeled by strings
There is a universal algorithm.
Uncomputability exactly the same
Intractability largely the same
Exciting recent progress: Use computational view to address fundamental physics questions.
State of \(n\) qubit system: unit vector \(v\) of dimension \(2^n\). Coordinates identified with \(\{0,1\}^n\).
Evolution: Apply unitary matrix \(U\): \(v \leftarrow Uv\).
Gates: Unitary matrices that only modify \(\leq 3\) qubits.
Measurement: Observe \(x \in \{0,1\}^n\) with probability \(|v_x|^2\).
System state: \(v \in \mathbb{R}^8\), \(\|v\|=1\). \(v = v_{000}\color{red}{|000\rangle} + v_{001}\color{red}{|001\rangle} + v_{010}\color{red}{|010\rangle} + \cdots + v_{111}\color{red}{|111\rangle}\)
\(\color{red}{|010\rangle} = \left( \begin{smallmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{smallmatrix} \right)\)
Operation: \(v \mapsto Uv\), \(U\) is \(8\times 8\) unitary matrix.
Example: Apply \(H = \tfrac{1}{\sqrt{2}} \left( \begin{smallmatrix} +1&+1\\ +1&-1 \end{smallmatrix} \right)\) to first bit
\(Hv = v_{000}(H\color{red}{|0\rangle})\color{red}{|00\rangle} + v_{010}(H\color{red}{|0\rangle})\color{red}{|10\rangle} + \cdots + v_{110}(H\color{red}{|1\rangle})\color{red}{|10\rangle} + v_{111}(H\color{red}{|1\rangle})\color{red}{|11\rangle}\)
\(=\tfrac{1}{\sqrt{2}}\Bigl( v_{000}(\color{red}{|000\rangle} \color{green}{+} \color{red}{|100\rangle}) + v_{010}(\color{red}{|010\rangle} \color{green}{+} \color{red}{|110\rangle}) + \cdots\) \(+ v_{110}(\color{red}{|010\rangle} \color{green}{-} \color{red}{|110\rangle}) + v_{111}(\color{red}{|011\rangle} \color{green}{-} \color{red}{|111\rangle}) \Bigr)\)
Measurement: Get value \(abc \in \{0,1\}^3\) with probability \(v_{abc}^2\).
Example: \(v = \color{red}{|111\rangle}\), and apply \(H\) to each bit
\(\tfrac{1}{\sqrt{8}}\) \((\color{red}{|0\rangle} - \color{red}{|1\rangle})(\color{red}{|0\rangle} - \color{red}{|1\rangle})(\color{red}{|0\rangle} - \color{red}{|1\rangle})\)
\(=\tfrac{1}{\sqrt{8}}\bigl(\color{red}{|000\rangle} - \color{red}{|001\rangle} - \color{red}{|010\rangle} + \color{red}{|011\rangle} - \color{red}{|100\rangle} + \color{red}{|101\rangle} + \color{red}{|110\rangle} - \color{red}{|111\rangle} \bigr)\)
If measure, get each outcome \(abc \in \{0,1\}^3\) with probability \((\pm \tfrac{1}{\sqrt{8}})^2 = \tfrac{1}{8}\).
Operations are
foo = NAND(bar,blah)
(corresponds to \(foo \leftarrow foo \oplus NAND(bar,blah)\))
Had(foo)
(correspond to \(foo \leftarrow Had(foo)\))
Run \(s\) line prog on input \(x\):
In 1822 Joseph Fourier proposed solution to “heat equation” using following observation:
Every (“nice”) \(f:[0,1] \rightarrow \mathbb{R}\) can be decomposed as a sum of wave functions of the form \(g(x) = \sin(a x)\) or \(g(x)=\cos(b x)\).
In 1965, Americans wanted to find way to detect Soviet nuclear experiments from seismic data. Can do so with Fourier transform but was too slow.
John Tukey came up with “Fast Fourier Transform”: improve running time from \(n^2\) to \(n \log n\): thousand or million times speedup!
Tukey couldn’t publish so collaborated with James Cooley for chemistry application.
On every “top 10 algorithms” list. Applications include signal processing, compression, spectroscopy, engineering, earth sciences, optics, crystallography,…
Input: \(f:G \rightarrow \mathbb{R}\)
Output: Representation \(\hat{f} = \sum_y \hat{f}(y) \chi_y\). \(\chi_y\) is “periodic” function.
Input: \(n\)-bit integer \(m=p\cdot q\).
Given: \(f:\{0,1\}^n \rightarrow \{0,1\}\). efficiently computable function
Create: State \(\hat{f} \in \mathbf{R}^{2^n}\), \(\hat{f} = \sum_{y\in \{0,1\}^n} \hat{f}(y)\color{red}{|y\rangle}\)
\(\hat{f}(y) = \tfrac{1}{2^n}\sum_{x \in \{0,1\}^n} -1^{f(x)}(-1)^{\sum x_i y_i}\)
Initialize state to \(\color{red}{|0^n \rangle}\).
Apply \(HAD(x_i)\) to all \(i\)
\(\tfrac{1}{2^{n/2}}(\color{red}{|0\rangle} + \color{red}{|1\rangle}) (\color{red}{|0\rangle} + \color{red}{|1\rangle}) \cdots (\color{red}{|0\rangle} + \color{red}{|1\rangle})\) \(=\tfrac{1}{2^{n/2}}\sum_{x\in \{0,1\}^n}\color{red}{|x\rangle}\)
\(\tfrac{1}{2^{n/2}}\sum_{x\in \{0,1\}^n} -1^{f(x)}\color{red}{|x \rangle}\)
\(\tfrac{1}{2^n}\sum_{x\in \{0,1\}^n}-1^{f(x)}(\color{red}{|0\rangle} + (-1)^{x_0}\color{red}{|1 \rangle}) \cdots (\color{red}{|0\rangle} + (-1)^{x_{n-1}}\color{red}{|1 \rangle})\)
\(=\tfrac{1}{2^n}\sum_{x\in \{0,1\}^n} \sum_{y\in \{0,1\}^n} -1^{f(x)} (-1)^{\sum y_i x_i} \color{red}{|y \rangle}\)
\(= \sum_{y\in \{0,1\}^n} \hat{f}(y)\color{red}{|y \rangle}\)
Quantum computers don’t seem to effect private key cryptography.
Break factoring and discrete-log based public key systems.
Alternative: lattice based cryptography